Time-Optimal Path Planning and Control Using Neural Networks and a Genetic Algorithm

نویسندگان

  • Nachol Chaiyaratana
  • Ali M. S. Zalzala
چکیده

* R & D Center for Intelligent Systems, King Mongkut’s Institute of Technology North Bangkok. ** Department of Computing and Electrical Engineering, Heriot-Watt University, Edinburgh, United Kingdom Abstract This paper presents the use of neural networks and a genetic algorithm in time-optimal control of a closed-loop 3-dof robotic system. Extended Kohonen networks which contain an additional lattice of output neurons are used in conjunction with PID controllers in position control to minimise command tracking errors. The results indicate that the extended Kohonen network controller is more efficient than the trajectory pre-shaping scheme reported in early literature. Subsequently, a multi-objective genetic algorithm (MOGA) is used to solve an optimisation problem related to time-optimal control. This problem involves the selection of actuator torque limits and an end-effector path subject to timeoptimality and tracking error constraints. Two chromosome coding schemes are explored in the investigation: Gray and integer-based coding schemes. The results suggest that the integer-based chromosome is more suitable at representing the decision variables. As a result of using both neural networks and a genetic algorithm in this application, an idea of a hybridisation between a neural network and a genetic algorithm at the task level for use in a control system is also effectively demonstrated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hardness Optimization for Al6061-MWCNT Nanocomposite Prepared by Mechanical Alloying Using Artificial Neural Networks and Genetic Algorithm

Among artificial intelligence approaches, artificial neural networks (ANNs) and genetic algorithm (GA) are widely applied for modification of materials property in engineering science in large scale modeling. In this work artificial neural network (ANN) and genetic algorithm (GA) were applied to find the optimal conditions for achieving the maximum hardness of Al6061 reinforced by multiwall car...

متن کامل

Modeling and Multi-Objective Optimization of Stall Control on NACA0015 Airfoil with a Synthetic Jet using GMDH Type Neural Networks and Genetic Algorithms

This study concerns numerical simulation, modeling and optimization of aerodynamic stall control using a synthetic jet actuator. Thenumerical simulation was carried out by a large-eddy simulation that employs a RNG-based model as the subgrid-scale model. The flow around a NACA0015 airfoil, including a synthetic jet located at 10 % of the chord, is studied under Reynolds number Re = 12.7 × 106 a...

متن کامل

Robot Path Planning Using Cellular Automata and Genetic Algorithm

In path planning Problems, a complete description of robot geometry, environments and obstacle are presented; the main goal is routing, moving from source to destination, without dealing with obstacles. Also, the existing route should be optimal. The definition of optimality in routing is the same as minimizing the route, in other words, the best possible route to reach the destination. In most...

متن کامل

Optimizing Multiple Response Problem Using Artificial Neural Networks and Genetic Algorithm

  This paper proposes a new intelligent approach for solving multi-response statistical optimization problems. In most real world optimization problems, we are encountered adjusting process variables to achieve optimal levels of output variables (response variables). Usual optimization methods often begin with estimating the relation function between the response variable and the control variab...

متن کامل

Optimization of micro hardness of nanostructure Cu-Cr-Zr alloys prepared by the mechanical alloying using artificial neural networks and genetic algorithm

Cu–Cr-Zr alloys had wide applications in engineering applications such as electrical and welding industrial especially for their high strength, high electrical as well as acceptable thermal conductivities and melting points. It was possible to prepare the nano-structure of these age hardenable alloys using mechanical alloying method as a cheap and mass production technique to prepare the non-eq...

متن کامل

Near-Minimum-Time Motion Planning of Manipulators along Specified Path

The large amount of computation necessary for obtaining time optimal solution for moving a manipulator on specified path has made it impossible to introduce an on line time optimal control algorithm. Most of this computational burden is due to calculation of switching points. In this paper a learning algorithm is proposed for finding the switching points. The method, which can be used for both ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International Journal of Computational Intelligence and Applications

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2002